68 research outputs found

    Engineering precision surgery: Design and implementation of surgical guidance technologies

    Get PDF
    In the quest for precision surgery, this thesis introduces several novel detection and navigation modalities for the localization of cancer-related tissues in the operating room. The engineering efforts have focused on image-guided surgery modalities that use the complementary tracer signatures of nuclear and fluorescence radiation. The first part of the thesis covers the use of “GPS-like” navigation concepts to navigate fluorescence cameras during surgery, based on SPECT images of the patient. The second part of the thesis introduces several new imaging modalities such as a hybrid 3D freehand Fluorescence and freehand SPECT imaging and navigation device. Furthermore, to improve the detection of radioactive tracer-emissions during robot-assisted laparoscopic surgery, a tethered DROP-IN gamma probe is introduced. The clinical indications that are used to evaluate the new technologies were all focused on sentinel lymph node procedures in urology (i.e. prostate and penile cancer). Nevertheless, all presented techniques are of such a nature, that they can be applied to different surgical indications, including sentinel lymph node and tumor-receptor-targeted procedures, localization the primary tumor and metastatic spread. This will hopefully contribute towards more precise, less invasive and more effective surgical procedures in the field of oncology. Crystal Photonics GmbH Eurorad S.A. Intuitive Surgical Inc. KARL STORZ Endoscopie Nederland B.V. MILabs B.V. PI Medical Diagnostic Equipment B.V. SurgicEye GmbH Verb Surgical Inc.LUMC / Geneeskund

    How molecular imaging will enable robotic precision surgery: the role of artificial intelligence, augmented reality, and navigation

    Get PDF
    Molecular imaging is one of the pillars of precision surgery. Its applications range from early diagnostics to therapy planning, execution, and the accurate assessment of outcomes. In particular, molecular imaging solutions are in high demand in minimally invasive surgical strategies, such as the substantially increasing field of robotic surgery. This review aims at connecting the molecular imaging and nuclear medicine community to the rapidly expanding armory of surgical medical devices. Such devices entail technologies ranging from artificial intelligence and computer-aided visualization technologies (software) to innovative molecular imaging modalities and surgical navigation (hardware). We discuss technologies based on their role at different steps of the surgical workflow, i.e., from surgical decision and planning, over to target localization and excision guidance, all the way to (back table) surgical verification. This provides a glimpse of how innovations from the technology fields can realize an exciting future for the molecular imaging and surgery communities.Imaging- and therapeutic targets in neoplastic and musculoskeletal inflammatory diseas

    A DROP-IN gamma probe for robot-assisted radioguided surgery of lymph nodes during radical prostatectomy

    Get PDF
    Background: The DROP-IN gamma probe was introduced to overcome the restricted manoeuvrability of traditional laparoscopic gamma probes. Through enhanced manoeuvrability and surgical autonomy, the DROP-IN promotes the implementation of radioguided surgery in the robotic setting.Objective: To confirm the utility and safety profile of the DROP-IN gamma probe and to perform a comparison with the traditional laparoscopic gamma probe and fluorescence guidance.Design, setting, and participants: Twenty-five prostate cancer patients were scheduled for a robot-assisted sentinel lymph node (SN) procedure, extended pelvic lymph node dissection, and prostatectomy at a single European centre.Surgical procedure: After intraprostatic injection of indocyanine green (ICG)-Tc-99m-nanocolloid (n = 12) or Tc-99m-nanocolloid + ICG (n = 13), SN locations were defined using preoperative imaging. Surgical excision of SNs was performed under image guidance using the DROP-IN gamma probe, the traditional laparoscopic gamma probe, and fluorescence imaging.Measurements: Intraoperative SN detection was assessed for the different modalities and related to anatomical locations. Patient follow-up was included (a median of 18 mo).Results and limitations: Overall, 47 SNs were pursued in vivo by the DROP-IN gamma probe, of which 100% were identified. No adverse events related to its use were observed. In vivo fluorescence imaging identified 91% of these SNs. The laparoscopic gamma probe identified only 76% of these SNs, where the detection inaccuracies appeared to be related to specific anatomical regions.Conclusions: Owing to improved manoeuvrability, the DROP-IN probe yielded improved SN detection rates compared with the traditional gamma probe and fluorescence imaging. These findings underline that the DROP-IN technology provides a valuable tool for radioguided surgery in the robotic setting.Patient summary: Radioguided robot-assisted surgery with the novel DROP-IN gamma probe is feasible and safe. It enables more efficient intraoperative identification of sentinel lymph nodes than can be achieved with a traditional laparoscopic gamma probe. The use of the DROP-IN probe in combination with fluorescence imaging allows for a complementary optical confirmation of node localisations. (C) 2020 The Author(s). Published by Elsevier B.V. on behalf of European Association of Urology.Oncologic Imagin

    Translation of c-Met targeted image-guided surgery solutions in oral cavity cancer: initial proof of concept data

    Get PDF
    Simple SummaryTranslation of tumor-specific fluorescent tracers is crucial in the realization intraoperative of tumor identification during fluorescence-guided surgery. Ex vivo assessment of surgical specimens after topical tracer application has the potential to reveal the suitability of a potential surgical target prior to in vivo use in patients. In this study, the c-Met receptor was identified as a possible candidate for fluorescence-guided surgery in oral cavity cancer. Freshly excised tumor specimens obtained from ten patients with squamous cell carcinoma of the tongue were incubated with EMI-137 and imaged with a clinical-grade Cy5 prototype fluorescence camera. In total, 9/10 tumors were fluorescently illuminated, while non-visualization could be linked to non-superficial tumor localization. Immunohistochemistry revealed c-Met expression in all ten specimens. Tumor assessment was improved via video representation of the tumor-to-background ratio.Intraoperative tumor identification (extension/margins/metastases) via receptor-specific targeting is one of the ultimate promises of fluorescence-guided surgery. The translation of fluorescent tracers that enable tumor visualization forms a critical component in the realization of this approach. Ex vivo assessment of surgical specimens after topical tracer application could help provide an intermediate step between preclinical evaluation and first-in-human trials. Here, the suitability of the c-Met receptor as a potential surgical target in oral cavity cancer was explored via topical ex vivo application of the fluorescent tracer EMI-137. Freshly excised tumor specimens obtained from ten patients with squamous cell carcinoma of the tongue were incubated with EMI-137 and imaged with a clinical-grade Cy5 prototype fluorescence camera. In-house developed image processing software allowed video-rate assessment of the tumor-to-background ratio (TBR). Fluorescence imaging results were related to standard pathological evaluation and c-MET immunohistochemistry. After incubation with EMI-137, 9/10 tumors were fluorescently illuminated. Immunohistochemistry revealed c-Met expression in all ten specimens. Non-visualization could be linked to a more deeply situated lesion. Tumor assessment was improved via video representation of the TBR (median TBR: 2.5 (range 1.8-3.1)). Ex vivo evaluation of tumor specimens suggests that c-Met is a possible candidate for fluorescence-guided surgery in oral cavity cancer.Imaging- and therapeutic targets in neoplastic and musculoskeletal inflammatory diseas

    Assessing the value of volume navigation during ultrasound-guided radiofrequency- and microwave-ablations of liver lesions

    Get PDF
    Purpose: The goal of our study was to determine the influence of ultrasound (US)-coupled volume navigation on the use of computed tomography (CT) during minimally-invasive radiofrequency and microwave ablation procedures of liver lesions.Method: Twenty-five patients with 40 liver lesions of different histological origin were retrospectively analysed. Lesions were ablated following standard protocol, using 1) conventional US-guidance, 2) manual registered volume navigation (mVNav), 3) automatic registered (alpha VNav) or 4) CT-guidance. In case of ultrasonographically inconspicuous lesions, conventional US-guidance was abandoned and mVNav was used. If mVNav was also unsuccessful, the procedure was either continued with alpha VNav or CT-guidance. The number, size and location of the lesions targeted using the different approaches were documented.Results: Of the 40 lesions, sixteen (40.0 %) could be targeted with conventional US-guidance only, sixteen (40.0 %) with mVNav, three (7.5 %) with aVNav and five (12.5 %) only through the use of CT-guidance. Of the three alternatives (mVNav, alpha VNav and CT only) the mean size of the lesions targeted using mVNav (9.1 +/- 4.6 mm) was significantly smaller from those targeted using US-guidance only (20.4 +/- 9.4 mm; p < 0.001). The location of the lesions did not influence the selection of the modality used to guide the ablation.Conclusions: In our cohort, mVNav allowed the ablation procedure to become less dependent on the use of CT. mVNav supported the ablation of lesions smaller than those that could be ablated with US only and doubled the application of minimally-invasive US-guided ablations.Cardiovascular Aspects of Radiolog

    Advancing intraoperative magnetic tracing using 3D freehand magnetic particle imaging

    Get PDF
    Purpose Sentinel lymph node biopsy is a routine procedure for nodal staging in penile cancer. Most commonly, this procedure is guided by radioactive tracers, providing various forms of preoperative and intraoperative guidance. This is further extended with fluorescence imaging using hybrid radioactive-fluorescence tracers. Alternatively, a magnetic-based approach has become available using superparamagnetic iron-oxide nanoparticles (SPIONs). This study investigates a novel freehand magnetic particle imaging and navigation modality (fhMPI) for intraoperative localization, along with a hybrid approach, combining magnetic and fluorescence guidance. Materials and methods The fhMPI set-up was built with a surgical navigation device, optical tracking system and magnetometer probe. A dedicated reconstruction software based on a look-up-table method was used to reconstruct a superficial 3D volume of the SPION distribution in tissue. For fluorescence guidance, indocyanine green (ICG) was added to the SPIONs. The fhMPI modality was characterized in phantoms, ex vivo human skin and in vivo porcine surgery. Results Phantom and human skin explants illustrated that the current fhMPI modality had a sensitivity of 2.2 x 10(-2) mg/mL SPIONs, a resolving power of at least 7 mm and a depth penetration up to 1.5 cm. Evaluation during porcine surgery showed that fhMPI allowed for an augmented reality image overlay of the tracer distribution in tissue, as well as 3D virtual navigation. Besides, using the hybrid approach, fluorescence imaging provided a visual confirmation of localized nodes. Conclusion fhMPI is feasible in vivo, providing 3D imaging and navigation for magnetic nanoparticles in the operating room, expanding the guidance possibilities during magnetic sentinel lymph node procedures. Furthermore, the integration of ICG provides the ability to visually refine and confirm correct localization. Further clinical evaluation should verify these findings in human patients as well.Imaging- and therapeutic targets in neoplastic and musculoskeletal inflammatory diseas

    The Click-On gamma probe, a second-generation tethered robotic gamma probe that improves dexterity and surgical decision-making

    Get PDF
    Purpose Decision-making and dexterity, features that become increasingly relevant in (robot-assisted) minimally invasive surgery, are considered key components in improving the surgical accuracy. Recently, DROP-IN gamma probes were introduced to facilitate radioguided robotic surgery. We now studied if robotic DROP-IN radioguidance can be further improved using tethered Click-On designs that integrate gamma detection onto the robotic instruments themselves. Methods Using computer-assisted drawing software, 3D printing and precision machining, we created a Click-On probe containing two press-fit connections and an additional grasping moiety for a ProGrasp instrument combined with fiducials that could be video tracked using the Firefly laparoscope. Using a dexterity phantom, the duration of the specific tasks and the path traveled could be compared between use of the Click-On or DROP-IN probe. To study the impact on surgical decision-making, we performed a blinded study, in porcine models, wherein surgeons had to identify a hidden Co-57-source using either palpation or Click-On radioguidance. Results When assembled onto a ProGrasp instrument, while preserving grasping function and rotational freedom, the fully functional prototype could be inserted through a 12-mm trocar. In dexterity assessments, the Click-On provided a 40% reduction in movements compared to the DROP-IN, which converted into a reduction in time, path length, and increase in straightness index. Radioguidance also improved decision-making; task-completion rate increased by 60%, procedural time was reduced, and movements became more focused. Conclusion The Click-On gamma probe provides a step toward full integration of radioguidance in minimal invasive surgery. The value of this concept was underlined by its impact on surgical dexterity and decision-making.Imaging- and therapeutic targets in neoplastic and musculoskeletal inflammatory diseas

    Clustering and erratic movement patterns of syringe-injected versus mosquito-inoculated malaria sporozoites underlie decreased infectivity

    Get PDF
    Malaria vaccine candidates based on live, attenuated sporozoites have led to high levels of protection. However, their efficacy critically depends on the sporozoites' ability to reach and infect the host liver. Administration via mosquito inoculation is by far the most potent method for inducing immunity but highly impractical. Here, we observed that intradermal syringe-injected Plasmodium berghei sporozoites (syrSPZ) were 3-fold less efficient in migrating to and infecting mouse liver than mosquito-inoculated sporozoites (msqSPZ). This was related to a clustered dermal distribution (2-fold decreased median distance between syrSPZ and msqSPZ) and, more importantly, a 1.4 fold (significantly)-slower and more erratic movement pattern. These erratic movement patterns were likely caused by alteration of dermal tissue morphology (.15 -mm intercellular gaps) due to injection of fluid and may critically decrease sporozoite infectivity. These results suggest that novel microvolume-based administration technologies hold promise for replicating the success of mosquito-inoculated live, attenuated sporozoite vaccines.IMPORTANCE Malaria still causes a major burden on global health and the economy. The efficacy of live, attenuated malaria sporozoites as vaccine candidates critically depends on their ability to migrate to and infect the host liver. This work sheds light on the effect of different administration routes on sporozoite migration. We show that the delivery of sporozoites via mosquito inoculation is more efficient than syringe injection; however, this route of administration is highly impractical for vaccine purposes. Using confocal microscopy and automated imaging software, we demonstrate that syringe-injected sporozoites do cluster, move more slowly, and display more erratic movement due to alterations in tissue morphology. These findings indicate that microneedle-based engineering solutions hold promise for replicating the success of mosquito-inoculated live, attenuated sporozoite vaccines.Radiolog
    • …
    corecore